Accessing climate data via OPeNDAP
Using IDL with remote data
VISualize 2012

Michael D. Galloy
Tech-X Corporation
19 June 2012
1. Data Access Protocol (DAP)
2. Accessing DAP served data from IDL
3. Convenient set of routines for other SDFs
4. GPULib update
Data Access Protocol (DAP)

1. open standard
2. simple HTTP-based protocol
3. remote access data via an URL
4. access individual variables as well as subsets
5. client libraries for most languages, including web browsers
6. multiple DAP server implementations
DAP data sources for climate data

1. 20th Century Reanalysis at NERSC
2. NASA DAACs
3. NOAA, UCAR, USGS, JPL, COLA, etc.

See more at:

docs.opendap.org/index.php/Dataset_List
20th Century Reanalysis

- 18 variables
- 180 x 91 lat/lon
- 56 ensemble members
- 1460 reading per year (every 6 hrs)
- 140 years, 1871 to 2010

Over 12 TB of finished product, plus raw data
Options for using DAP from within IDL:

1. OPeNDAP IDL client (DLM)
2. IDL’s netCDF 4.0 bindings (sort of)
3. Remote Data Toolkit
netCDF bindings

- netCDF 4.0 able to access DAP, but...
- curl library problem on some platforms, works for:
 - Linux: IDL 8.0+
 - Mac: IDL 8.2+
 - Windows: not yet
netCDF bindings for a file

```python
cfilename = 'ps_1871.nc'
file_id = ncdf_open(filename, /nowrite)
var_id = ncdf_varid(file_id, 'ps')
ncdf_varget, file_id, var_id, value, $
    count=[180, 91, 1, 1], $
    offset=[0, 0, 25, 700], $
    stride=lonarr(3) + 1
ncdf_close, file_id
```
netCDF bindings for a DAP URL

```
url = 'http://portal.nersc.gov/pydap/'
    + '20C_Reanalysis_ensemble/
    + 'analysis/ps/ps_1871.nc'
file_id = ncdf_open(url, /nowrite)
var_id = ncdf_varid(file_id, 'ps')
ncdf_varget, file_id, var_id, value,
    count=[180, 91, 1, 1],
    offset=[0, 0, 25, 700],
    stride=lonarr(3) + 1
ncdf_close, file_id
```
netCDF: TX_NC_GETDATA

```python
url = 'http://portal.nersc.gov/pydap/' + '20C_Reanalysis_ensemble/' + 'analysis/ps/ps_1871.nc'
ps = tx_nc_getdata(url, 'ps[*, *, 25, 700]')
```
Special purpose routine

\[
ps = \text{mg}_20\text{c}_\text{getdata}('ps', 1871, \\
\text{ensemble}_\text{member}=25, \\
\text{time}=700)
\]
Attributes and TX_NC_DUMP

IDL> print, tx_nc_getdata(url, 'ps.standard_name')
surface_air_pressure
IDL> tx_nc_dump, url
+ FILE <http://portal.nersc.gov/pydap/20C...>
 - VARIABLE fltarr(91) lat
 . ATTRIBUTE units = 'degrees_north'
 . ATTRIBUTE standard_name = 'latitude'
 - VARIABLE lonarr(56) ensemble_member
 . ATTRIBUTE long_name = 'ensemble member...'
...
TX_NC_BROWSER
HDF5: TX_H5_GETDATA

```python
f = filepath('hdf5_test.h5', $subdir=['examples', 'data'])
res = mg_h5_getdata(f, $'/arrays/3D int array[3, 5:*:2, 0:49:3]')
class = mg_h5_getdata(f, '/images/Eskimo.CLASS')
mg_h5_dump, f
```
HDF4: TX_HDF_GETDATA

filename = 'MOD021KM.A2010019.' $
 + '1235.005.2010259102219.hdf'
mg_hdf_dump, filename
sen_az = mg_hdf_getdata(filename, $
 'SensorAzimuth')
Save files: TX_SAVE_GETDATA

IDL> cow_filename = file_which('cow10.sav')
IDL> mg_save_dump, cow_filename
Variables: 4

Variables

POLYLIST = lonarr(2321)
...
IDL> polylist = mg_save_getdata(cow_filename, $'
polylist')
GPULib 1.6 update

- curve fitting project for next two years (NASA SAGE III mission)
- release soon with:
 - CUDA update,
 - bug fixes,
 - 8-dimensional arrays,
 - optimized scalar/array operations,
 - added a few simple routines like GPUCONJ
Future features

1. MAGMA for GPU accelerated LAPACK routines
2. Levenberg–Marquardt curve fitting
3. ability to create kernels “on the fly” from strings
Conclusion

Questions!

- mgalloy@txcorp.com
- www.txcorp.com/products/GPULib
- michaelgalloy.com